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ABSTRACT

This work reports a study made of the stresses induced

in a thin cylindrical tube by int,_rnal blast loading from a

detonation wave. A method for theprediction'of th__cylind_r'_

stress response has been developed on the basis of a. s'%mple

dynamic model of the vibrating system and an approximat_

expression for the shape of the blast loading wave. The.
L

resultsare demonstrated to compare-satisfactorily with

experimental stress measurements.

This investigation was associated with an experimental

study of detonation phenomena in hydrogen-oxygen mixtures

contained in large diameter cylindrical vessels. The safety
i

of the vessel is critically dependent upon the magnitude of
/

the hoop stresses induced in the Cylinder walls by the detona-

tion process. A strain measuring system utilizing semiconductor

strain gauges was employed to monitor the stresses, and these

results, in conjunction with the theoretical stress predic-

tions, provided a satisfactory check on the state of stress

in the metal. /_
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NOMENCLATURE

C_ - Constant (for strain gauges).

- Young'_ Modulus of Elasticity.

- Force

_,_ - Gauge Factor (for strain gauges).

b - Thickness of cyl_nder.

- Step function.

k - spring constant.

- Length of cylinder.

Dq - Mass.

p - Pressure.

r - Radius

- Radial acceleration

R - Reflected wave pressureratio

R - Electrical resistance

- Sensitivity

- Transfo_ variable

t - Time

i - Decay time

- Displacement

Gr_ Symbols

O_ - Temperature expansion coefficient

- Ratio of specific heats

6 - Strain level

1965025752-008



vi

- Non- linearity

- Angular measure

p - Density

- Dynamic cime function

t5_ - Stress

- Efficiency

C_ - Natural frequency

- Axial length

Subscripts

o - Initial zondition

Dq - Maximum

- Axial

8
- Hoop
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INTRODUCTION

This work describes an experimental and analytical investi-

gation of stresses induced in dynamically loaded cylindrical

pressure vessels° The program was associated with studies of

gaseous detonation conducted at the Propulsion Dynamics Laboratory,

University of California, Berkeley. As part of these studies,

observations were made in detonating hydrogen-oxygen mixtures

contained in a 2 ft. diameter x 20 ft. long stainless steel

cylindrical vessel.

To provide an adequate margin of safety, it was decided _o

restrict operation of the vessel so that the maximum stress

induced by the explosion would not exceed the yield stress of

th_ material. This was to be accomplished by placing an upper

limit on the init%al pressure of the mixture for each condition

of initial temperature and composition° A series of detonation

tests were to be performed, at successively increased values of

initial pressure, until the maximum stress, deduced from strain

measurements made at selected locations on the vessel, approache(_

the yield condition.

The dynamics of thin-walled cylinders have been studied by

a number of investigators, and among the first reported works

are the classical treatises of Lord Rayleigh (i) and Love (2)o

These early references, however, are of limited application

since they are concerned with cylinders having infinitely thin

walls_ A more useful and up-to-date treatment of thin-shell
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theory can be found in the authoritative text of Timoshenko (3).

There are essentially two indepenaent ways in which a thin

cylinder responds to dynamic excitation. These are demonstrated

in Fig. I where they are classified a (a) extensional vibra-

tions, and (b) bending modes.

Extensional vibrations, (a), are set up as a direct result

of symmetrical excitation in the radial and axial directions.

There is only a single mode of oscillation in each instance, that

is to say, the radial and axial vibrations t_ke place at their

corresponding fundamental frequencies. The amplitudes of vibra-

tion are not oniv dependent on the geometry of the vessel, the

point of application of the load, and its magnitude, but are

highly sensitive to the duration and pulseshape of the load.

The bending modes, (b), are systems of combined axial and

radial harmonic flexural vibrations. There are an infinite

n_mber of modes for both the axial and radial directions and

hence an infinite n_nber of combinations of these modes consti-

tuting this aspect of the cylinder's motion. The relative ampl_

tudes of the vario_:s modes are dependent on boundary conditions

such as the shell geometry and the method of excitation. In

the present application the excitation of the cylinder was

radially symmetric so effects from the bending modes were negli-

gible. The treatment of flexural vibrations in thin cylinders

by Arnold and Warburton (4), which was extended by Mixson and

Herr (5) to include the effect of internal static pressures in

the cylinders, provides a satisfactory background for this part

cf the analysis and is presented here in Appendix I.
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The extensional response of 6 pressure vessel to a single

pulse was d_scussed in recent papers by Baker (6), and Hodge (7).

Baker developed the basic equations of motion for a thin

sphere subjected to a linearly decayinN radial pressure pulse,

accounting for both elastic snd plastic shell deformation. In

the elastic range the differential equations of motion are linear

end may be solved by Laplace transform techniques in a manner

similar to that for other vibrating systems, i.e. single degree

of freedom spring-mass or inductance-resistance networks.

Consideration of these analogous systems permits the attainment

of solutions for a variety of pulse loading wave-shapes. A

comprehensive treatment of such solutions is given in reference (8).

The analysis by Baker for the plastic range becomes fairly complex,

_[_d_ in spite of a highly simplified model, it leads to non-

linear differentlal equations of motion which must be solved by

numerical techniques.

Hodge (7) considers only the plastic deformation of thin

cylinders since his primary concern was the point _f ultimate

failure. The paper is of interest, however, in that a variety

of blast-loading waveshapes are considered, giving a notable

expansion of applications.

Since it was specified earlier that the vessel was not to

be stressed beyond its yield point, the present analysis is

restricted to the elastic range. Theoretical stress predictions

based on the dynamic behavior of a simple dynamic model are

correlated to experimental measurements of strain obtained by use
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of semiconductor strain gauges on the outer surface of the vessel.

Theoretical and experimental agreement is shown to be satisfactory,

thus establishing a useful design approach for future situations

of this kind, which might include, for example, the design of

safety vessels for proof testing of high pressure equipment, or

the design of rocket motor thrust chambers where the design must

provide for the possibility of internal explosions. It should

be noted that application of this theory is not restricted to

cylinders. A simple change of the coordinate system or the

boundary conditions of the equations would make the method appli-

cable to almost any mathematically definable thin shell design.
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THEORY

The dynamic response of the vessel is determined from the

equations of extensional motion of a cylindrical surface under

the action of a radially acting force which are derived in

generalized form by Timoshenko (3).

Figure 2 shows the segment of cylinder considered, a curved-

face rectangle of wldth cd6) and lengthdr. A time varying

pressure impulse, p (t), acts radially outwards on the element,

giving rise to two major stresses, an axial stress, o_z , and

a hoop stress, _ . Bending stresses caused by p (t) will be

negligible provided that the analysis is restricted to long

unlformcyllnders and that end effects are not considered.

Static stresses which result from a pressure difference across

the walls of the cylinder are neglected, but maybe accounted

for in the general stress system by simple add±tion in the event

they acquire significant magnitude.

Before proceeding _ some realistic forms of dynamic loading

are examined. This particular investigation calls for an examina-

tion of blast-type loadings, which, generally speaking, are

considered as a single application of a large force for a very

short period of time. Such loadings are specified analytically

in terms of their peak pressure, p_ , and total time of duration

or decay, T . several blast-type loading pulse-shapes areshown

in Fig. 3_ arranged In order of s_ccessively better approxima-
• C

tions to the measured" wave shapes of typical blasts.
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The rectangular step function, (A), provides the simplest

boundary conditions for solution of the equations of motion,

but is the least accurate representation of a typical blast

load. The pulses with linear and exponential decays, (_)

and (C), can generally be used as good approximations to the

loading pulse-shape, and provide reasonably straightforward

solutions to the equations of motion. The best approximations

to a blast load, (D)" and (E), are unfortunately in too com_plex

a mathematical form to permit easy matching to experimental

results, i.e. therels considerable difficulty involved in

finding the bestvalues ofthe constants for the mathematical

forms when matching experimental data.

In the following analysis, the linear decay pulse,(5), has

been used as an example throughout. Experience has shown that

this waveshape approximates well to the type of blast loading

associated with gaseous detonation processes. In Appendixll,

solutions to the equations of motion are given forthe other

waveshapes shown in Fig. 3.

Consider, now, the hoop and axial stresses induced in th_

cylinder by a p_essure loading function p (t). In this example

it is taken as sawtooth wave shape, pulse (_) as shown in Fig. 3,

which is given by:

P(t) "I" P_ (i- t/T) _Or 0 6 t_ T

O t

where T is the total, time of duration o_-the-pulse, and pm_ts

maxlmumpressure..
r

1965025752-019



Hoop Stress___

Figure 2 shows a small seglaent of cylinder under the

action cf a radial pressure _(t), giving rise to a hoop stress

_s • In order to find the radial acceleration, i_ , from

_= rn_ , the radial forces may be equated thus giving us

the equation of motion:

do de&) /o r-?__,q;(_,n-_-)h_z+p(_ =. d@dz. d_z/'d$': (1)

which, upon simplification becomes:

+ corm = p(t_@h (2)
L

The complete solution to equation (2) may be found in Appendix II,

but here only the final results will be quoted.

When _ (t) is given by the sawtooth function, ( ), the

hoop stress, determined by the method of laplace transform is:

where

_o _ i - - co5 _o_ + a.,e_ - -
(4)

and r is the cylinder radius, h its thickness, and _oe its natural

hoop frequency of Vibration.

It should be noted that the solution for O_9 is composed of

two parts--a parameter corresponding to the hoop stress
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induced in a thin cylinder by a static internal pressure of

magnitude, _m , and a dynamic time function,_8 , representing

the correction to _8 required for the specified time variant

loading.

Axkal Stress

Axial vibrations of the vessel ar t set up when the detonatln

wave reflects from the end wall at the end of the cylinder oppo-

site to the ignitor. In this case the response of the vessel

can be compared ideally to the motion of a spring-mass-system,

Fig. 4, where:

the spring constant of cylinder = k = A _- _Tvrh_/_

the mass of system = mass of the end-flange = m

The equation of motion for this System is:

rn_, + kR = F(t) (5)

where here X = U_ , the displacement from equilibrium position.

For the sawtoothed impulse example, the R.H.S. of Eq. (5) is:

'_0 _or, t, ,_T
where _ accounts for the difference in peak amplitudes between

the incident and reflected pressure pulses. Thus, if pmls the

incident wave peak pressure, then the reflected wave will have

a peak pressure of _p_.

When dealing with the reflection of detonation waves from

a solid end wall, theoretical prediction of the value of _ is

J965025752-02J



virtually impossible due to the complexity of the interaction

process. _ must then be found by comparing direct measure-

ments of pressure taken at the side wall and end wall of the

cylinder° The case may arise, however, of a simple (non-.

reactive) shock wave undergoing the reflection process and, for

this case, gasdynamic theory can provide an estimation of the

value of _ . The shock __eflection process is depicted in the

space-time plane, Fig. 5.

•Using the form given by reference (9), the ratio of the

reflected to incident wave pressures is:

P -Po
where p,_ is the pressure of the gas at rest, _i the pressure

behind the incident shock wave, and _ the pressure behind the

reflected wave.

In terms of the incident wave pressure ratio, then, _ can

be expressed as:

The equation of motion, (5), can then be written in the form:

which by comparison to Eq. (2) leads, by inspection, to the
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following expression for the ayial stresses:

Axial stress_ _z = __r_ _ (7)

where

(8)

- -_'zT 9in uo= - oozT /
_o,,.-1;#q"

tO_ being the natural axial frequency of vibration of the cylinder°

As was the case with the hoop stress, it can be seen that the

solution is comprised of two parts - one a static parameter

corresponding to the axial stress that would be induced in a

cylinder loaded with a static pressure of magnitude (_p_n) and

the other a dynamic loading function _z , givx,Lg the correction

I

to _ for the given dynar_ic load.

Apart from the solutions for the hoop and axial stresses just

considered, Appendix II gives the solutions for the other wave-

,shapes shown in Fig. 3. In each case it is found that the solu-

tion is in the same form, a stat._c stress parameter multiplied

by a dynamic ].o_.._ngfunction. Graphs are given in the Appendix

of these functions for most of the loadings considered, the

plots being on a non-dimensional amplltude-time coordinate system.
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EXPERIMENTAL APPARATUS

Test Vessel

Figure 6 shows a side elevation of Lhe detonation tube, a

20 ft. long x 2 ft. diameter stainless steel cylinder of 3/8"

wall thickness, closed at one end by a solid plate, and at the

other by a removable flange. The vessel is supported at three

places, as indicated on the drawing. A viewing section of glass

portholes intended for Schlieren visualization of the flow

extends alond nearly half the length of the cylinder. In

addition, the vessel is tapped in numerous locations with ports

to accept pressure transducers, ionization plck-ups, thermo-

couples, etc.

Provision is made for heating and cooling the vessel in

order to run tests in the range -200 to +200°F, this being

effected by electric heating rods attached to the vessel's

outer skin and a liquid nitrogen spray cooling system. The

instrumented vessel is shown in Fig. 7.

The _rocedure for running detonation experiments was to

first evacuate the vessel to a pressure of a few microns of Hg,

next fill with a pre-mlxed charge of hydrogen and oxygen to

the desired initial pressure, then to initiate the detonation

prccess with a small charge of solid explosive. A detonation

wave would be quickly established and travel down the length

of the vessel to be refTected at the far end wall.

Of the many instruments used in these tests to observe the

detonation process, only the pressure and strain recorders are

1965025752-024
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of direct interest here, althoug_ temperature measurements

were required in conjunction with the strain measurements and

ionization plck-ups were needed to trigger this instrumentation.

Pressure Measurement

The pressure-time history of the detonation waves at 2 ft_

intervals along the length of the vessel and at the end wall

was recorded by a series of piezo-electric pressure transducers.

The_particular transducers used were Kistler type 601 quartz

crystal pic_-ups, with a sensing element 1/8" diameter, a

pressure range of i - 5000 psi, a sensitivity of 0.57_/_ Cb/psi,

and a rise time of 3 _sec. The output from the transducers

were recorded using Tektronix 535 and 551 oscilloscopes.

Strain Measurement

Measurements of the strains produced in the detonation tube

were made using strain gauges located at a number of poimts on

the outer surface of the vessel. A few gauges were attached at

critically stressed points (on corner welds and around the

entrance ports),but these were solely ior safety reasons and

need not be further considered here. The remaining gauges .

were affixed at locations 6 ft. 14 ft_ and 18 f_ from the closed

end, on reasonably uncluttered parts of the vessel's skin where

surface discontinuities would not affect the :esults. At each

location the gauges were mounted in pairs, one to read axial and

the other radial 3tralns at each of the measuring sta£ions.
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Choice of the strain gauge instrumentation lay essentially

between:

(a) Wire grid gauges of a special type having their backing

strip and insulation made of a sult_ble material to withstand

the wide range of temperatures over which the tests would be

conducted. It is necessary, when using this type of gauge, to

amplify their output considerably - this requirement for ampli-

fiers unfortlmately increasing the overall cost of the instru-

mentation quite considerably.

(b) Semiconductor strain gauges for which no additional

amplification is necessary - the output from this type of gauge

is sufficient to permit direct connection to be mede to an

oscilloscope with high sensitivity amplifiers.

The semiconductor system was chosen as being most suitable

for this application , and Baldwin-Lima-Hamilton type SPB2-18-12

strain gauges were selected. Full details of the installation

and calibration of the gauges is g_ven in Appendix II.

The recording system for preservation of permanent records

of the strain history were obtained using Tektronix 535 or 551

oscilloscopes equipedwith Polaroid camer_. The com_'lete

strain recording system is show_, in outline in Fig. 8.
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FXPERIMENTAL RESULTS

The series of stress measurements reported here was run

using stoichiometrlc mixtures of hydrogen and oxygen in the

pressure range I00 to 200 mm Hg. Simultaneous readings were

taken from the pressure and strain gauges during each test,

the outputs being recorded on oscilloscopes (and preserved by

photographs) which were triggered at the time of passage of the

detonation wave by ionization probes. Measurement of the time

intervals between successive pressure traces permitted the

detonation wave to be traced as it passed down the cylinder

and was reflected at the end wall. Such a trace is shown on

the time-distance plane in Fig. 9. In this case, the triggering

ionization probe was at station 2, and the wave's passage plott_

from pressure records made at stations 3, 5, 7, and 9 which are

shown in Fig. 26, together with strain records made at stations 3,

7, and 9. Figure 10 is typical of measurements made at I00 mm Hg

initial pressure; a typical set of measurements for 200 n_n }lg

is given in Fig. ii; Fig. 12 shows further results for i00 mm Hg,

the oscilloscope sweeptime being extended in this case to show

better the low frequency axial vibrations.

Analysis of the pressure records for a number of experiments

made at the same initial conditions permits plotting of the

variation of the peak wave pressure alon e the detonation tube

(Fig.13).
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Similarly the reflected wave pressure is found from

the pressure records made at the end wall of the vessel.

These are plotted as a function of initial mixture pressure,

Fig. 14. Figures 13 and 14 clearly indicate the effect of

using the Primacord explosive to initiate the detonation

process - the detonation wave is "overdriven" by the explosive

charge, resulting in wave pressures generally higher than those

predicted by the Chapman-Jouguet detonation theory, reference (9).
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ANALYSIS AND DISCUSSION

The dynamic response of the cylinder in terms of the hoop

and axial stresses cam be predicted from Eqs. (3) and (7) pro-

vided the specific boundary conditions can be supplied. These

conditions are:

(a) _J_ andd_)_, the hoop and axial natural frequencies

of the vessle, respectively, which may be found

from the physical dimensions and material properties

of the cylinder.

(b) the equation for the pressure loading function, p(t),

here assumed to be a sa_ooth pulseshape.

(c) the magnitude of the peak wave pressure, which may be

obtained directly from Figs. 13 and 14.

(d) the decay time of the pressure pulse, also obtained

from the pressure records in the manner explained

in Fig. 15.

Evaluating these, in order, for the dase in question:

(a) the expression for the natural hoop frequency, OO 0 ,

is given by Eq. (A2.5) in Appendix II:

where for type 304 stainless steel,

E = 29 x 106 psi

/O = 0.287 Ib/in 3

r = the mean radius of the cylinder = 12.19 in.
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so that

O09 = 16,316 radians/sec = 2,597 cycles/sec.

The axial natural frequency,O0Z, is given by Eq. (A2.16),

Appendix II as:

_ &TrrhE
_z = - " rY_L -

where

"Oq = mass of vessel end cap = 940.7 Ib

= length of vessel = 240 in.

h = wall thickness of vessel = 0.375 in.

then

LO= 42_ x 12.19 x 0.375 x 29 x 106 x 386

| 940.7 x 240

= 1,1935 radians/sec = 191 cycles/sec.

(b) pressure loading function,

Pet)=t t/T) O t mt
(c) peak pressure,_. In order to permit use of the

response curves (shortly to be obtained) for a range

of peak pressures, pm is taken as unity.

(d) decay time, T , of pressure pulse. The experimental

results obtained from the present test shows that

the range 0.I ( -_ < i0.0 milliseconds.

Substituting these values in Eqs. (3) and (4), (7) and (8)

yields the appropriate expressions for the hood and axial

stresses.
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Hoop Stress

where

for O<_<T (4)

l T.-.
J_,- t>T

and both % ands are to be given in milliseconds.

The calculation of _# is almost identical to the calcula-

tion of _(_ which is given in detail in Appendix II. The

computer program for this computation, as sho_ in Table I, is

for a range of pulse decay times from 1.0_X _ i0 milliseconds.

Figure 16 shows 1she resulting computer output, which is in the

form of a graph off, versus time _ yielding a family of curves

for the various values of d cay time, T . Figure 17 shows a

similer plot of _0 for the range of decay times 0.1_X_ 1.0 milli-

seconds. Values of_ obtained from these cu_es may be substi-

tuted directly into Eq. (3) to obtain the actual value of the

hoop stress, q .
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Equation <7) gives: _Yz= _'_ _ - • ¢_

-- 0.75----- "¢= " F*'J'

where, from Eq. (8),
r

) ""'lJ. (I.J,_e,_T) '

where again both _ and T are to be specified in milliseconds.

In the same manner as for the hoop stress _. has been

computed for a range of decay times I_0 _ "7- _ i0 milliseconds

using an electronic computer..The resulting graph is shown

in Fig. 19, where _z against time, _ . Values of _ obtained

from this graph may be substituted directly into Eq. (7) to

obtain the actual value of axial stress, _ .
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COMPARISON OF THEORY AND EXPERIMENT

Results for the dynamic stresses iD the cylinder are

now avai]ab!e in two forms which will be compared in detail.

These are (a) purely experimental stzain measurements, and

(b) theor,:;ical stress predictions which are still partly

experimeTtal in that they depend upon the pressure measurements

to obtaln the input waveshape.

t

Comparison of Measured and Predicted Freou_ncies of Vibration

Collected measured values of the natural hoop and axial

frequencies are given in Table 2 together with the corresponding

calculated values. The form of the loading function does not

appear in the expressions for the vessel,s natural frequencies -

Eqs. (A2.5) and (A2.16) in Appendix II. However there are

several other ways in which inaccuracies may be expected to

appear in these values, for example:

a) Variations are to be expected in the steel manufacturer's

quoted values of the cylinder material's properties,

not only for the vessel as a whole, but also from

point to point in the material.-

b) Dimensional accuracy in the cylinder's skin thickness,

, is known to be poor. The nominal thickness of

3/8" may vary by as much as 4_ I/i6" which, for the

axial frequency, would result in considerable variation

from the calculated value. The hoop natural f equency

is independent of skin tbichless, provided this dimension
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is _ery small compared with the cylinder's radius.

c) In measurement of the mass of the vessel's end cap

in order to find the axial natural frequency, it

is difficult to determine how much of the mass of the

end flange and clamping bolts should be included, an

additional problem being the welding between the

cylinder and end flange which has obliterated the

transition point and locally increased the cylinder's

"spring-constant".

Co__arison of Measured and Predicted Maximum Stress Amplitudes

The experimental and predicted values of the maximum .

tensile stress amplitudes are presented in Table 3, and shown

graphically in Fig. 19.

Predicted values require specification of the input loading

function, which was found in each case by reference to the rele-

vant pressure record, using the sawtooth approximation to

specify the function mathematically. Use of Figs. 16, 17 and

18 for the hoop and axial dynamic time functions led _ediately

to the predicted values of the maximum stresses.

a) Hoop stress

In comparing the experimental and predicted values, it

will be seen that there is good agreement for the results

obtained at position 9, but values measured at position 7 £all

approximately 25% below the predicted values. This variation

is most probably due to an artificial strengthening of the
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cylinder in the vicinity of position 7 by either an increas_

in the skin thickness or through the ribbing that supports an

outer skin around the vessel.

b) Axial stress

Here there is considerable v_£1atl_n between experimental

and calculated results, In each case the measured value is

5etween 1/5 and i/i0 of that calculated. The discrepancy

indicates that the transfe_ of energy between the end cap and

cylinder walls _s considerably less efficient than was antici-

pated. More light is thrown on this result by comparJson of the

dynamic waveforms, which are discussed in the following section.

Comparison of Dynamic Waveforms

a) Hoop stress

In Fig. 20 are reproduced the measured strain gauge outputs

from Test CD 149 together with the calculated curve shown to

tb? same scale from Fig. 16. As may be seen, agreement is good

or the first 0.7 milliseconds, after which time the arrival of

the reflected shock wave adds an additional loading to the

system. The effect of the additional stressing du_ to the

reflected shock wave could be included into the analysis, but

the results for the time precedin B the arrival of the reflected
c

shock give all the data required.

Normally, as may be seen from the analytical and experi-

mental results, _he _,ost serious stressing occurs in the first

half cycle of the dynmale response, when the dynamic loading
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function,_, tends toward its upper limit of 2.0. In this

particular case, however, a second loading pulse in the form

of the reflected shock wave, was added to the motion before

the effect of the f_rst loading pulse had decayed, consequently

cuasing the most serious stressing to occur during the first

cycle of the response corresponding to the arrival of the

second loading pulse.

The good agreement between the predicted and measured

waveforms and peak amplitudes for the hoop stresses (at location 9)

is satisfying, since it is these hoop stress that will cause

_le ultimate failure of the cylinder. The axial stresses, as

measured, are only 50 to 60% of the hoop stressmagnitudes.

In any general stress system the component stresses must be

summed, taking the Poisson's ratio effect into account, in order

to find the magnitude of the maximum stress. Here, however,

the two component stresses take place on different time scales

and consequently never require their additive effect to be

accounted for. The hoop stresses are excited first, reaching

peak amplitude after approximately 0.2 milliseconds, and are

substantially decayed by the time the axial stresses have

reached maximum amplitude approximately 12 milliseconds later.

Thus, the record on the axial strain gauge AA, shown toBether with

the hoop record, BB, in Fig. 20 is purely a Poisson's ratio effect,

given by:
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b_ Axial stress

The strain record for axial motion shown in Fig. 12_

.s recorded by gauge AA, may be compared with the calculated

curve for axial response from Fig. 18, using the particular

curve for a 2.0 millisecond decay time. The calculated curve,

it may be seen, is almost exactly a pure sine wave of peak
!

amplitude _Z(max ) = 1.0.

Examination of the experimental trace shows that from the

second cycle onward the response is slnusoidal. The first cycle,

however, is of considerably less amplitude, indicating a re]atlvely

slow trai_fer of energy from end plate to cylinder. This effect,

and the diminution in stress amplitude noted previously

would indicate that the simple model for axial motion (Fig. 4)

should be somehow improved to account for the energy transfer

from end plate to cylinder.

The gradual buildup of response amplitude is typical of

the response of a two mass - two spring system, which could

here be u_ed as a model by considering the flange securing bolts

as the second spring. Such a model is shown in Fig. 21, but

is not examined in detail since it has already been determined

that, in this case, the axial stressing does not produce the

critical stresses in the cylinder.
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CONC£US IONS

A theory predicting the dynamic response of a cylindrical

vessel under the action of a symmetric radial blast load has

been developed. In addition, experimental data have been obtained

for the dynamic stress response, the tests having been carried

out ou a 20 ft. long x 2 ft_ diameter cylinde-- loaded by

internal detonation of a mixture of hydrogen and oxygen, The

response waveforms and peak stre3s loading in the critical hoop

direction show close agreement between theory and experiment.

_n important aspect of the experimental work was the use of

semiconductor strain gauges - a relatively new technique for

stress analysis. In evaluation of these gauges it mast be

said that their performance was most satisfactory, and apart

from their tedious calibration requirements, represent a very

significant step forward in strain gauge technology.
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APPENDIX I

HARMONIC FLEXURAL VIBRATIONS

There are, as was explained in the Introduction, two salient

types of vibration pertaining to cylindrical shells: (a) exten-

sional vibrations, as have been examined in the preceding text,

and (b) bending or flexural modes.

It is evident that whereas the extensional vibrations, (a),

depend upon extension and some slight amount of bending, the

flexural modes, (b), are associated only with bending and do not

produce any appreciable extension or contraction of the surface

midway between the inside and outside cylinder walls. Practical

experience shows that a cylinder can easily be deformed by pressing

it inward at the periphery (for example at two opposite points,

illustrating the 2nd radial mode ...see Fig. i). The operation

is clearly one associated with bending alone, since any extension

of the middle surface would require considerable force to produce

it.

The effect of any impulse loading on a cylinder will be to

excite both forms of vibration, the relative vibrational amplitudes

for a given cylinder being a function of the magnitude, the wave-

shape, and the point of application of the load. Taking each

vibrational form in turn, the type of loading to which each is

most susceptible can be examined.
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Bending modes are, of course, most easily excited by a

periodic force, especially when the frequency of the excitation is

the fundamental or some harmonic natural frequency of the cylinde_

In this case resonance can produce a rapid buildup of response

amplitude leading eventually to the cylinderTs failure° However,

we are here only ¢ou_e_nled with impact ioadings, where the co_,dition

of resonance is never encountered°

Flexural vibrations, then, will not cause serious stressing

of the vessel in this application, and, in fact, could be neglected

if their effect did not show in the strain and pressure records°

While producing almost no strain in the middle surface of the

cylinder, some effect will be detectable on the inner or outer

surfaces, so it is to be expected that these vibrations will appear

as high frequency signals superimposed on the strain gauge records

of extensional vibrations°

It is of interest to note that the piezo-electric pressure

transducers used in these tests will also be susceptible to

flexural v_brations. These transducers are acceleration sensitive

through the inertia induced piezo--electric effect, so that, as

these transducers are rigidly attached to the cylinder _Jalls,

flexural vibrations will induce an add_ional signal superimposed

onto the response to the pressure pulse.

The acceleration induced signal on both strain gauge and

pressure records was generally disregarded in analysis of data as

the amplitudes involved were always small. The signal could be

distinguished easily from the signal correspondlr_ to other data
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by the frequencies at which it aDpeared; these _,;_reeasily found

under test conditions by recording the output from a microphone

positioned near the vessel, the creation of sound waves at the

same frequencies being another direct consequence of this form

of vibration°

Theory of Harmonic Vibrations

IfJ_ is the number of the radial mode (= half the number of

nodes), and _ the number of waves _anding in the axial length of

the tube, any combination of _ and_ can combine to form a vibra-

tion pattern, with external factors such as surface discontinuities,

vessel supports, etc=, determining which vibrational patterns will

be present and in what proportions,

From the external conditions in this instance, it is possible

to predict that (a) due to the three point method of support of

the vessel (see Fig° 6)it is probable that the eve_____naxial modes

will predominate (ioe°_ = 2,4,6, etc.); (b) the method of excita-

tion being an axially moving stress pulse, it is equally likely

for the radial mode to be any of those possible, probably the

higher frequencies being excited more easily than the lowo

The following theory follows the approanh of Arnold and

Warburton (4), which itself is an adaptation of Love's classic

theory (2). The effect of the static pressure differemce across

the walls of the cylinder is discussed by Mixson and Herr (5),

but calculation of the effect in this instance showed that it could

be neglected with no loss of accuracy to the analysis.
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As it stands, the vessel under consideration is somewhat

awkward to analyze since one end is closed by a disc-like inte-

gral closure and the other by a flange and associated removable

end cap° T_he end conditions play an important role in determining

the axial vibration mode and must be carefully considered. Arnold

and Warburton account for end conditions by a factor modifying

the value of _ , the wavelength factor, which, for freely supportc_

ends is"

_= TFOL_%
% (A1.9

where_is the mean cylinder radius, _ the cylinder length, and

_Y_ the number of the axial mode°

The other extreme case is the condition of fixed ends, when

the wavelength factor becomes:

Somewhere between these two cases lie the flanged and the

drum-closed end conditions. Experimental evidence led to the

following empirical expression to account for these:

Z

where h is the wall thickness of the cylinder and _ is an

"equivalent diameter" for the end flange such that

I / i--/_

where _ = flange outer radius/flange inner radius, dl is the flange
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thickness, andT_is Poisson's ratio.

Equation (/11.3) is the expression for a flanqed end, and

does not account for the removable end cap which, however, has

been shown experimentally to have negligible effect on the wave-

length factor.

In addition to _., the wavelength factor, Arnold and Warburton

define a frequency factor, _ , given by:

where _ is the vibrational frequency,/o the _a,terial density, and

E the modulus of elasticity.

Re+arranging (Ai.4) to give an expression for frequen _, ,_ ,

and substituting the follo_ng values for the cylinder used in this

experiment:

OJ = 12.19 in. _ = 0.29

= 240 in. E = 2 x 106 psi

81 = 2.85 in. h = 0.375 in.

b = 1.295 a = 1.565 in.
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The frequency factor, _ , is determined from the folJowing

equation_ derived in the Aopend_.x to Arnold and Warburton's

paper, (4) :

- 4(

K, =o._(k_,* 4)_+ I.z7i5_ + o.955#, I _%m/3(Xae+@)'e

i+ t. (£,:,, n j

with//_ = 'q_,t _"
, ?--,,o'_ (= 0.79 x 10-4 in this instance).
/

Now, using Eqs. (AI.3 - AI.5) an example is given cf the calcu-

lation of the lowest vibrational frequency, that is, where the

axial mode number, rh =i, and the radial mode number, rl= 2.

The wavelength factor for nO = I is:

A_ = 0.1595 (1+0.1855)

= 0.1891

The _ coefficZents, leading to the value of /% , and

ultimately to the frequency, _ , are, for YI= 2:

_o = (0.325 x 1.281 x 10-3) _ (0.355 x 0°79 x 10-4)

[(4.0358) 4 - 4.59 - 128 +-16]

-3) -,_= (4.16 x 10-4) + (4.12 x i0 = 4.538 x i0

_i = 0"355(4"0358)2 + (1.271 x 3.58 x 10-2) + (0.355 x 4)

+ 1.355 x 0.75 x I0"4(4.0358)

= 5.76 + 0,0455 + 1.420 + 0.0070 = 7.232

K_ = i + 1.3.55(4.0358) = .6.__46
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Then A = 0.628 x i0-_

104v_f'_ = 67.8 cycles/second.
r

and _ - 3.7

ihe remaining frequencies have been calculated according to the

curves of _ given in Arnold and Warburton's paper (4), a

slightly less accurate but considerably more convenient technique.

The results are plotted in Fig. (AI.I) for the lower vibrational

frequencies as are tabulated on the following page°
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_r_xl04
Axial Radial Wavelength 7requency Frequency =
Mode Mode Factor Factor c/s

I 2 .]891 .025 67.8

3 .070 189

4 .129 349

5 - 573

2 2 .350 .036 97.5

3 .070 189

4 .131 355

3 2 .508 .055 149

3 .075 203

4 .133 360

4 2 .667 .087 235

3 .087 235

4 .!4 379

5 2 .8271 .130 351

3 .102 276

4 .155 415
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APPENDIX I!

STRESS ANALYSIS

Hoop Stresses

The derivation of the hoop stress and dynemic stress function,

summarized in the main text in Eqs. (I) to (4), is given below

in full for the example of the sawtooth input waveshape.

With reference to the diagram showing the £orces and stresses

on a small segment of a cylinder, Fig. 2, a force balance in the

radial direction will give the radial acceleration, i.e.Z_=_r

and leads to the eauation of motion:

where _ is the mass of the element,/o is its density, P its

radial acceleration, h its thickness, and d_ anddg its circum-

ferential and axial lengths respectively. _. is the hoop stress

acting on the element due to the radially acting internal pressure,

p , which is time variant and will be represented by p(t) here

onward. The radial acceleration is the second derivative of the

radial displacement, t_ , which is given by

d

where _ is the initial mean radius of the cylinder, and r the

radius at a subsequent time, _ .
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For small displacements, Eq. (A2.1) can be simplified by

writing sin _ and_ , then:

£' g

The hoop stress, _ may be replaced by an expression for

! the displacement, t_ , provided that the assumptions are made

_- that the cylinder is long and that each element is in a state of

plane stress, i.e. _ = E_6 = EL_/C: , where _Q is the hoop

strain, and E the modulus of elasticity. Equation (A2.2) then

becomes :

 tJh /.-p - P_.u ._. (_ 3)
/

, For small displacements, we can assume that M_O,_ ,_

: constant, and ? _- constant, which leads to"

I

or (A2.4)

From the second term in this equation we can define a

natural hoop frequency , _8 as:

: __ (A2.5)
VT,.r-,

so that Eqo (A2.4) may be written simply as
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The Laplace transform method was chosen as the most conven-

ient means of solution of this equation of motion for the particular

boundary conditions encGuntered in this application. Thus, the

Laplace transform of Eq. (A2.5) for initial conditions 5£(D)=_(o)= O

is

Solving for bt we have:

= )

o

and p(_) -----Z E p(t_]

•It now only remains to find to obtain the full solution.

Each of the various mathematical approximations ior blast loads,

as shown in Fig. 3, will yield a different solution. Here, the

solution for the sawtooth ftmction (B) will be demonstrated. The

other soiutions are given later.

The pressure function, p(t), fo_- the sawtooth waveshape,

(B), is given, by:

where T is the total time of duration of the pressure pul_e,

and pm the maximum pressure°
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This can be transfo1_ned into a single expression by use of

a unit step function N(t-T)such that

i Co_t>T
then the loadtng function becomes:

7

: p(9) is then obtained by finding the Laplace transform of p(t),

thus :

Relating ['£_:_)tO p<_ by means of Eq. (A2.7) we have:

The solution in terms of the displacement, tA(_) , is obtained

by taking the inverse transform of the above expression, thus:
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Removing the part of the solution pertaining to the arti-

ficially introduced step function, mci --]-) , we obtain finally
• /

the following solution for the displacement:

(A2.10)

Equation (A2.10) consists, in each of its two parts, of a

constant terra representing the hoop displacement of a thin cylinder

under constant static internal pressure, p_ , and a trigonometric

time function representing the correction to the static pressure

fo_nula required for a dynamic pressure as specified in Eq. (A2.8).

The time function will be here onward called the dynamic loading

function. Thus, for the ease of the sawtooth input function,

dynamic loading function, _ ,
the is:

4_7

0 t..Y T

Equation (_2.10) for displacement can now be reaJced Lo:

•
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!

Rewriting this in terms of strain, we have:

which, in terms of stresses, yields:

--h

Thus in each case, the required parameter (displacement,

stress, or strain) can be obtained by simply multiplying the

expression for a thin cylinder under constant static internal

pressure by the dynamic time function, _ .
/

Axial Stresses

In the main text, the equation of motion in the axial direction

was obtained in the form of Eq. (6) as follows:

v_

where UJzis the axial displacement of the cylinder's end flange,

which is of mass and is acted upon by a pressure _(h) where

is the ratio of the reflected to the incident pressures. The

cylinder, of mean radius _ has an axial spring constant _ .

" The form of Eq. (A2.15) can be seen to be similar to the

eqration for hoop motion (A2.6), especially if an axial natural

frequency, 6<JL , be defined such that

Thus Eq. (A2.15) becomes:

...._. (_2.16)
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By direct comparison, the solution for the axial dynamic

loading function, #z- , exactly comparable to#e , is obtained:

(A2o17)'-\ oJzT / _lr, _ozt, uo_-F t_T

The complete solution for displacement, stress, and strain

can then be w-=itten (again the coefficients of represent the

values of the parameters corresponding to a statically loaded thin

cylinder).

displacement:

L_ = RTrr__._ p_. _ (_.18_
strain:

6_ = ' z (A2.19)

,ll
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i

Solutions for AlternateDynamic LoadiDgs

, The other dynamic loading forms shown in Fig, 3 will give

_i different solutions fer the aynamic loading functions and
#

! but will not affect the other parts of the solution, i.e.

the parameters for statically loaded thin cylinders, Eqs. (A2.12-14)

and (A2o18-20).

Below are listed the solutions for the dynamic time functions,

_) , for each of the input waveshapes shown in Fig° 3:

(A) Square wave input
C

(B) Sawtooth input

o t>T

(A2.22)
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(C) __x_oonential dec,a_f

w_v,,h_e"pit)=?_.e

/,A ,, \p..,

' i + (._-/_T)

(A2.23)

where T = /d5

(D) Exponential multiplied by time

waveshape: p/t)::F_cetd -_

where T" _//6u

(E) L-inear rise with exponential decay

i pwe -4t-_'"_,.% _Z,

". e_ t!,.:F. /(_,,.)T)Z 'S,lqt,o"t, ) cosu
solution: ¢(:)' = _-

i+[L//_T]'i4_,(I/_oT) coT.

(i i '+ +_,,__,+ ....el,_I (_.2_.?/

fo_t>t, ,a_dwheret'=%-_;I a.d T - I/_
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Calcuiatio_,of DFnamic Time Functions

The expressions for the d_amic time functions, Eqs, (A2.21)

to (A2.25) give _(_,) as a function of three variables, _O , _ ,

and]- • In every case, OO can be combined with the time vsriabl_

that in effect _)is a function only of the two compositeSO

variables/&_ and (60_ •

Values of ¢ for va_io_Je of the solutions have been plotted

a_ functions of these composite variables, using an electror_c

computer to handle the calculations. In each case _) has been

plotted to a base of _)for several values of (go-[),for

1.0 _ _O]-_ I00 radians, the range of (oot) plotted being

0 _ 'x0_ _ 32.0 radiane

The computer program is very similar for each of the dynemic

time functions, and is explained in the following section. An

example program is given in fable A2.3 for the sawtooth input,

and alterations required for the other input functions are given

in T_ble A2.4.

The computer output, in the form of graph plots is presented

as follows:

Waveshape Output Plot

(A) Fig. AII.2

(B) Fig. AII.I

. (C) Fig. AII.3

(D) Fig. _I[.4

(E)--not computed. The addltio:_a_ varleble,

, rendered this function unsuitable for convenient prasenta£_on.
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Computer £rp_ram for Stress Calculations

A program in FORTraN computer language was constructed for

running the stress calculations on an IBM 7090 computer feeding

a CAL-COI_ automatic graph plotter. The computer calculated the

values of ¢(_) at time intervals _ for a variety of values

of T . The output was stored on magnetic tape which then becmne

the input for the graph plotter, resulting eventually in the set

of automaEical!y plotted curves shown in Figs. (AII.I-4).

With reference to Tables A2.1, A2.2 and A2.3, the explana-

tions and translation of the FORTRAN language variables, the

computer program flow chart, and the computer program respectively,

the step by step computation process can be followed through.

For given boundary conditions (/_O)_t_M_)_]-) the steps

involved are:

(i) selection of a value of]-.

(ii) selection of a value of

(iii) calculation of tot and reduction of this to an angle

between 0 and _- radians.

(iv) calculation of to_ and similar reduction to O<_<Z_T

(v) selection of the relevant part of the _£)function for

the particular value of _ involved.

(vi) computation of _(t)

(vii) plotting of the value of _) on the output cltrve.

(viii) selection of the next value of _ or-[ .

-t-

(ix) repetition for the new value of. T or _ until the entire

, range has been covered.
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Tables A2.1, A2.2, and A2.3 are for the sawtooth input function

(B), resulting in output curve AII.I. The programs for the other

inputs ,°re exactly similar, using the alterations to the program

caro-oecK as given in Table _2 4.
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APPENDIX III

SEMICONDUCTOR STRAIN GAUGES

.... ==- given detail= of the properties and_T _'_ =pp=_u_._ are

characteristics of semiconductor strain gauges, their installa-

tion, calibration, and their use. The particular gauges used in

the present work were Baldwin-Lima-Hamilton, type SPB2-!8-12,

although the information which follows is applicable, in general,

to all semiconductor gauges.

Background

The principle behind conventional resistance wire-grid strain

gauges can be traced back to the time of !_rd Kelvin who demon-

strated the manner in which certain metallic conductors exhibited

a change in electrical resistance when subject to mechanical strain.

Such gauges are now in a highly developed state and are the basis

of most experimental stress anely_is. In recent years, however,

a new strain sensitive @evice has been developed, very similar in

every respect to the old wire-grid gauges, but exhibiting resistanc_

changes in the order of 60 times those obtained from the wire-

grid types. This device is the semiconductor strai_ _auge, superior

to its older couterpart in its increased sensitivity, lack of

hysteresis effects, and lack of zero shifting, and inferior in

only one major aspect - its non-linear response to strain. The

non-linear response hindered the development and popularity of
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• this new gauge for many years; in fact it was only in 1960 that

a serious attempt was made to explain the mechanism of operation

of the gauges from a knowledge of their crystallographic character-

istics (I0). A reliable theory is now established, and with the

aid of an electronic compt_ter to handle the rather lengthy

calibration calculations, there is no reason why semiconductor

gauges should be regards4 as any more problematic than wire-grid

gauges.

Theory

The "many--valley" theory of semiconductors, as is presented

in the appendix to Kef. i0, shows that for a semiconductor with

its maximum sensitivity along the Iii axis, the resistance-strain

relation can be expressed in the form:

+

F
where 6 is the strain level, _R_j F is the characteristic gauge

resistance at t_nperature T (to be explained later), and _is

the resistance change in straining the gauge from _ = O to _ = _ .

The constants C I, Cg, CB , etc., are basic properties of the

semiconductor material, depending on its material_ its crystallo-

graphic orientation and the level of doping.

A word of explanation on the crystallographic terms _ould

perhaps be appropriate here: Introduction of a foreign element

into the semiconductor crystal is known as "doping". This is a

common practice in manufacture of semiconductor strain gauges, as

it has an advantageous effect on strain-resistance linearity and

on temperature stability. In the case of sillcongauges, doping
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levels up to 1020 atoms of boron per cc have been advantageously

used (I0).

Selection of the best crystal axis along which to cut semi-

conductor gauges is indicated by the many valley theory as being

the ill axis° For a crystal of silicon, which grows in the form

• of a long hexagonal bar, tnis axis is the longitudinal center lineo

A sem6.conductor _ " _ma_erza_'s resistance will be a function of

the following parameters: T , temperature; _ , the strain level;

/O , the resistivity; and_ T the basic gauge resistance at I-

For a semiconductor strain gauge of given resistivity, cut on a

given axis, and of a given shape, then, the resistance •viii be a

function only of -_ , _ , and C_]T :

A/_ _ [e 6_ _ i c_2)rp ]- [T T " "u _T

Utilizing a reference temperature of 298°K, (A3.2) can be

non-dimensionalized with regard to temperatures, and an equality

established:

_o] T = Cl- --- _" T T (A3.3)

The prime mark used on any constauts here onward indicates that

values are referred to the 298°K reference temperature°

In practice it transpires that on]y the first two terms in

Eq. (A3.3) are _ecessary for quite accurate analysis. In Ref. !i
I

it is shown that the effect of G 5 at the high strain level of
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I0,000 /u"/" is less than 1%, and can justifiably be neglected, i.e.

.I I I

C_ = G4 = 0 5 _ el,c_.,,--_ 0

: This leaves us with the equation of a parabola: (see Fig. AIII I)

7

FRo]_= c,
7
"C

To bring semiconductor strain gauge theory into line with

theory for conventional wire gauges, the concept of a "gauge factor"

G.F., is introduced. For wire gsuges:

A_ _ G.E _ E, (A3.4b)

R3
is the governing equation for operation, _ and G.F. both being

constants for a particular gauge.

The non-llnear response to strain and the fact that the basic

gauge resistance, _o , is a function of temperature makes a simple

relation of this t_pe meaningless in the case of semiconductor

- gauges. However, use of a similar constant (G.F.)' is useful

in formulating the more complex expressions for these gauges.

(G.F.)' is defined as the gauge factor determined at reference

temperature 298°K and at zero strain, i.e.;

EG.F]' i

' =(G.F.)' Thus,
From Eq. (A3.3), It may be seen that C i

the equation describing the behavior of semiconductor strain
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gauges in its =ost convenient form is:

Eq. (A3.6) is the basic expression governing the character-

istics of any semiconductor strain gauge, where _ is the output

for _ change in strain 6 . It must be understood that 6 in this

equation is the _otal strain acting on the bar of silicon which

is the gauge's sensing element. Three separate and distinct

strains act on the silicon bar at any given time:

(i) 6 B - a large compressive strain due to bonding.

(i_) £T - a tensile or compressive strain due to differen-

tial temperature expansion or contraction between

the gauge element and the specimen.

(ili)_ - the strain in the specimen, the ma_litude of which

we are attempting to determine.

The total strain on the gauge element, 6 , is then:

-- ----C_ _ C. T + _,_ (A3.7)

The calculations involved in obtaining calibration curves for

the particular gauges used in these tests from formulae (A3.6 and 7

will be discussed later. F!r_c it will be beneficial to examine

the effects of temperature and bonding on gauges, and to consider

some practical aspects cf the use of semiconductor gauges - bonding

techniques, circuitry, calibration, etc.
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Gauge bonding

IS is not possible to bond a semlconductor strain gauge to

any specimen without leaving a residual strain on the gauge element

(the silicon rod in this case). The causes of this are twofold.

Firstly, there is always a large compressive strain on the silicon

rod from the backing material on to which it is mounted by the

manufacturers. Additionally, almost any process for attaching

the gauge to the specimen involves heating to cure the bonding

compound. Differentia_ temperature expansion between the silicon

and the specimen material will result in a permanent strain on

the silicon rod when cool.

Clearly, there is no time when the rod is unstressed except

before the silicon rod is mounted on to its backing. As it is

essential to determine the basic gauge constants under the condi-

tion of zero stress, these measurements must be mac_ by the

manufacturer at th_ time. Measurement is made of the silicon

rod's resistance and resistivity at the reference temperature of

298°K. From the resistivity measurement comes the values for the

constants (G _.), and Cizfrom Eq. (AO.6). In Fig. AIII.2 are

reproduced the manufacturer's curves used to determine these

constants. The value of resistance measured _nder these condi-

tions is that of _ , the unstressed gauge resistance at

298°K, also required in Eq. (A3.6).

After the c_libration measurements, the silicon rod is

bonded by the manufacturer into a thin strip of bakelite to aut

as backing support and aid in mounting the gauge on to the specimen
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This process results in a compressive strain being permanently

applied to the silicon rod by the bakelite surround.

It now remains only for the user to mount the backed gauge

on to the specimen in which strains are to be measured. The

practical aspects of this process will be described later> but

it should here be noted that the Epoxy cement used in this process

requires Chat heat and presm_re be applied while curing. The heat

puts a further compressive strain on the gauge due to differential

expansion between specimen and silicon, thus, by the time the

gauge is bonded and ready for use, it is in a state of compression

of considerable, but unknown, magnitude.

Equations (A3.6) and (A3.7) show how the magnitude of the

bonding strain may be determined:

NJ, T/
where

6 - e_ _ 6 T + e_ (A3.7)

If the resistance of the gauge be determined with no strain

on the specimen and at a temperature of 298°K, then Eq. (A3.7)

becomes

and, if _is the gauge resistance measured under these conditions,
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Thus tSis one measurement completes the calibration requirementsP

_ of the gauge, ]_adlng as it does, directl.v to evaluation of _E5'i

_ the bonding strain.

:_ Temperature effects%

Temperature variation affect._ semiconductor strain gauges in

t_ o ways_ (i) in affecting the value of the "unstressed gauge

[_o] T , and (ii) in changing the strain due to differ-resistance",

entlal expansion between gauge and specimen, 6T .

The differential expansion effe,zt is easily dealt with, pro-

vided that the expansion coefficients of gillcon and of the test:

speci=.en are accurately known. If o¢e is the temperature expan-

slon coefficient of silicon, 0<5 is the temperature expan&ion

coefficient of the specimen, then

where C)<"= o_ - O<'c=

When working with static strains, this expansion effect is undeslrabl

as the magnitude of _T often will exceed _ , the strain being

measured, and thus reduce the accuracy of measurement unless 6 T

is known very precisely. Compensation techniques, using another

gauge as "dummy" are conmlon in wlre-grld etrain gauge practice,

but less poDu!ar with semiconductor gauges because of_

a) the difficulty of matching gauges to give the same

output for a given temperature change. For this it is

necessary for the bonding strains to be nearly identical

for the two gauges, and practical experience shows that
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this is far from a simple matter.

b) the high cost of semiconductor gauges prevent too liberal

use of them merely as "dummy" gauges.

The problem is not serious when measuring only dynamic

strains, however. Knowledge cf the gauge temperature to only

reasonable accuracy was necessary to fina the zero-point on the

gauge characteristic from which measurements could be based.

In practi_e, therefore, a thermocouple was installed with each

gauge at the time of bonding, this giving a sufficiently accurate

temperature measurement.

The effect of temperature on the '_unstressed gauge resistance"

[_O]T is a basic property of the silicon material and could thus

be determined from a temperature coefficient curve supplied by

the manufacturer. This curve is reproduced in Fig. AIII.3.

Witb this curve and knowledge of the reference resistance

[_2_8 '_]T can be determined in the range 0 to 400°F. Here

we have another drawback in the use of these gauges. At the

present time there are no data available to find the variation

of[_o] T in the sub-zero temperature range. The suppliers of the

gauges, Baldwin-Lima-Hamliton Corporation, are at present collect-

ing data in this range, but meanwhile it is only possible to

estimate what will happen. Information received from the Semi-

conductor Division of BLH indleates that the ten_erature

coefficient curve is parabolic, reflecting the same value at

-200°F as at +75°F. Hence, the performance of the gauges at

low temperatures can be estimated, but no reliable low
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temperature measurements can be made until reliable calibration4

data is available.

L Pictorial representation of semiconductor strain gauge

characteristics

The effects of bonding and of temperature variations will

be clarified by reference to Fig. AI!I.4, a plot--not to scale-- of

typical gauge characteristic curves. The figure is an enlargement

of the negative section of the parabola shown in Fig. AIiI.I, the

several curves indicating different temperatures. The history

of the strain gauge, as covered in the previous pages, can be

mapped out on Fig. AIII.4 as follows:

The plain bar of silicon before mounting and backing is

represented by the origin; zero strain acts on the bar. The

manufacturer mounts the bar on to bakelite, and we move down the

298°K characteristic toward _ . The gauge user mounts the gauge

on to his test specimen, and, on recovering the temperature of

298°K, reaches the point _ , with a compressive strafn of

set into the gauge.

Now, if measurements are made at some other temperature, T ,

we move along the expansion characteristic (broken line) to

before any strain is applied to the specimen. If a tensile

strain, _5 , now be applied to the specimen, the gauge indicates

a strain of 6B+6_(T_e88_. No_, at the 'Izero point" _ ,

at some temperature, with the strain on the specimen zero, it
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follows from Eq. (A3.6) thmt the sensitivity is:

Then, on applying strain 6_ to the specimen the sensitivity

becomes (at point c)"

(k3.lZ)

+ C_,( 2e_T,/k_e6 "t £_'+_z'' [T_298,]_) _

The gauge output dae to a change in stress of _¢ will be given by

the difference between (A3.10) a_d (A3.11). Expanding and combinin

the two _quations:

T JL%+2_(C,,r_m-_s:l_,)]

The output change in.gauge resistance _ for strain GO is

given by:

AR, : AR-,c-A_:
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Practical Aspects

So far, only purely theoretical and general considerations

_ have been presented on beth the stress analysis and semiconductor
t,

strain gauge aspects of this work. It is now necessary to consider

practical details and theoretical predictions applied to this

specific project. Bonding procedure for the strain gauges will

first be briefly considered, followed by some practical schemes

for strain gauge circuitry, then details of the techniques used to

calibrate the gauges and prepare them for use.

Gau_e bonding

As was indicated at the beginning of the previous section,

_ six strain gauges were mounted on the detonation tube _ a radial

and an axial gauge at each of three stations.

Scrupulous preparation of the surface was carried out at these

i points, consisting of:

(a) surface grinding wlth a rotary belt-grlnder until the

surface was smooth and free from all irregularities.

(b) wire-brushlng to a high surface finish so that the

_ surface may be easily inspected for any imperfections.
t

(c) controlled surface scoring with No. 200 emery grit.-
_r

(d) scrubbing with acetone to remove all dirt and grease.

i Guide lines were then scribed on to the vessel'_ surface

co ensure accurate alignment of each gauge.

? The strain gauge and its associated thermocouple were pre-

pared by lightly washing in acetone.

'I

1
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A small quantity of Epoxy adhesive (EPY--400, manufactured

by Baldwin-Lima Hamilton Corporation) was smeared on the vessel

surface and the strain gauge and thermocouple positioned, ensuring

that no air bubbles were ::rapped under the gauge.

The strain gauge and thermocouple were covered with a 0o001"

film of Teflon - a plastic material to which Epoxy adhesives will

not adhere. Over this was placed an 1/8" thick Neoprene _bber

pressure pad and _ small flat copper plate. Bearing down on this

assembly, under spring pressure, was an adapted heavy soldering iror

to apply heat and pressure for curing the Epoxy adhesive. The

soldering iron was connected to a temperature controller which,

using the thermocouple as sensing element, kept the simply of heat

to the gauge such that its temperature was constant ag 250°F. An

overnight cure at this temperature ensured a satisfactory bond.

Fig. AIII.5 shows diagrammatically the bonding setup described

above.

After curing, the assembly was stripped down to the gauge,

excess adhesive chipped awsy with a small chisel, and the extension

leads to the strain gauge carefully soldered in place. The leads

were insulated and taped into place. The whole assembly was then

given several thick coats of Glyptal (a synthetic epoxy rubber

insulating compound made by the General Electric Company) to

ensure good electrical insulation and moisture proofing. Over

this was fitted a cover plate of 0.005" thick copper film for

electrical screening. The laboratory in which these tests were

conducted is in the close proximity of a local radio transmitter
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so that unscreened leads easily picked up a high level noise

signal at a frequency of about I Mc/s. The copper film adequately

screened off this interference.

A photograph of the gauge installation at station 7 taken

just prior to application of the Glyptal is shown in Fig. AIII.6.

Circuitry

Tilemore usual type of strain gauges, that is, for example,

those using a resistive wire grio a_ their sensing element, may

be used conveniently with bridge circuitry such as the Wheatstone

bridge. Their change in gauge resistance under strain is very

small compared with the over_all resistance of the gauge. With

semiconductor gauges, however, the change in gauge resistance is

so large that the inherent non-linearity of Wheatstone bridge type

circuits must be considered.

In the course of planning the circuitry for the semiconductor

gauges, the possibility of utilizing some Wheatstone bridge cir-

cuits thst had been employed previously with wire grid strain

gauges was investigated. The bridges essentially consisted of

the components shown in Fig. AIII.7.

For a resistance change Akin the strain gauge, the output,

/_o , is given by:

and the sensitivity is:

outputJ= A__!Eo= Z57A_
input e_ 557(357+A_)
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The plot of this shown in Fig. AllY.8, indicates that at

_= _O_ the _lon-linearity of the bridge output is as much as

_,3%. Such a value of _would be produced, at room temperatures,

by a strain of approximately 1200_I"/", which is certainly within

the possible strain range for this application.

Correction of the bridge non-linearity is posslble but incon-

venient, and use of this technique was rejected in favor of constant

current circuitry. In this case the voltase across the strain gauge

is directly monitored, the supply current being kept as near constar

as feasible. Constant current circuitry has several other advantage

which make it desirable in this application. The output, for

example, is up to double that for an equal arm bridge circuit°

Noise level is very low, as the ground line is co,non fur supply_,

gauge, and display equipment. To achieve near constant-current

conditions, the simple technique of using a large ballast resistor

across a high suFply voltage was used, the magnitude of the voltage

and ballast resistance being chosen to give a supply of approxi-

mately 20 milliamperes within 1/2% for a 120-f_ gauge operating

between _ i000_ "/". The circuit shown in Fig. AIII.9, operates

under the followin_ conditions:

voltage across strain gauge = 300 x 120 = 2.39 volts
15,120

current through strain gauge = 2.39/120 = 0.0199 amp

power dissipated by strain gauge = 0.0475 watts
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The efficiency of the circuit in ge_erating constant current, _G is:

_ - _'_ - 15aO00 - 99.2% (A3.14)
R, +_._. 15,120

where _ = resistance Jf ballast resistor = 15,000 ohms, and

%:,_ resistance o_ strain gauge = 120 ohms.

Hence, for a change of zesistance ,_, in the strain gauge,

the circuit no:L-linearity, £ , is:

_
AP--,

For example, when _ = I000 mIcroinches/inch, the resistance

change _:_, would be approximately 17_O_ for a 120...o_. gauge at

room temperature. Thus

C
i_i_7/120_ _O • 008 _0 : : o.oon3
I + (17/120)(0.008)

or 0 113% non-linearity.

The circuit sensitivity, _ , is defined as the voltage out-

put for an input of i microinch/inch strain inpllt:

S __ ----LF= VsG,Z_JI_.._c(L-___ (A3.16)

where VOG is the applied voltage across the strain gauge. Substi-

tuting the values found above:

S _ 2.39 x 0.015" x 0.992 x 0.999
120 x i

= 296 x 10-6 volts//< "/"
_This figure "for strain sensitivlty is only approximate since the

value for 1%_ can only be roughly estimated at this stage. The exact
value will, of course, be different for each strain gauge encountered
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A strain of i00/_ "/" could thus be expected to produce a

voltage output of approximately 0.03 volts. This would be within

the reasonable sensitivity range of the oscilloscopes used on this

project, their maxinc_ amplifier sensitivity being 0.02 volts/cmo

The constant-current circuitry thus being regarded as satis-

factory, a strain converter was constructed having six such cir-

cuits in parallel operation. Fig. AIII.10 gives the complete

circuit diagram for the strain converter. The six circuits are

only interlinked in that they share the same power supply - the

large ballast resistors prevent any one circuit from affecting the

others. Inciuded in the same unit was a conventional Wheatstone

bridge circuit specially constructed for measuring resistances in

the order of 120_C_ . This facility is necessory for initial call-

bration of the gauges. The external appearance of the strain

converter unit is shown in Fig. AIII.II, and the complete experi-

mental setup - stroin converter, power supply, oscilloscope is

shown in Fig. AIII.12.

Calibration

It will be recalled that it is necessary for the manufacturer

of semiconductor strain gauges to partially calibrate the gauges

at an early stage in the manufacturing process. The gauges as

supplied, then, are delivered complete %:Ith the values of the three

constants [_8, (G.F.)', and C2', determined before thegauge

silicon rod was mounted on its bakelite backing. Complete details

of the strain gauges as supplied are given in Fig. AIII.13.
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The constants (GoF.)' and C2' are inserted into Eqo A3o12
?

as they stand, but from the given value of (Ro)298 it is necessary

to construct a curve of (Ro)T over the required temperature range,

using the temperature coefficient curve (Fig° AIII 3) The result-
?

, ing curve of (Ro)T versus temperature is given in Fig° AIIIoI4,

and it will be noticed that this is given for a wider range of

temperatures than for which Fig. AIIIo3 supplies data° Data for
4

the temperature range 3(10 to 400°K is accurately known from the
$

B-L-H curve supplied with the strain gauges, and for the range 150

to 300°K can be fairly well estimated using the parabolic assumption

discussed earlier, For the remaining ranges 20 to 150°K and 400

to 460°K data can be estimated by extrapolation° It was considered

more advantageous now to present insecure data with a wid_ estimated

-i
error band than to give no resuIts for temperatures below 300°Ko

-i_ The error bands are marked on Fig° AIII°14 and shown in a clearer

format in Fig. AIII.15.

One further calibration constant is required before the per-

formance of the gauges can be completely predicted - measurement

of the bonding strain, _D , for each individual gauge,

This constant is found by accurately measuring the resistance

] of each gauge after installation is completed at a temperature of

precisely 298°K (77°F). It was found that the resistance at 298°K

i could be most accurately found by determining the gauge's resistance

:i over a small range of temperatures around 298 ° and picking off the

precise value from the curves of R versus T obtained, The curves

for the four gauges at stations 7 and 9 are given In Fig. AIIIoI6.
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Substitution of the resistance values in E_, (A308) led immediately

to the following values for the bonding strains:

Station 7: Gauge XX (axial) _ = -899 __"/"/

Gauge YY (hoop) £ = -744_'/''

Station 9: Gauge AA (axial) _= = +264+5_"/"

Gauge BB (hoop) C_ = -1347,_5__"/"

•_ow, together with che relevant properties of cbe material of

the test vessel that are given in Table AIIIol, all the constants

required for calibration are known.

Substituting into Eqo (A3o12) we have

Output = _5 = [_o]T" _9_'_ _ _-_._T

(A3°17)

The most convenient form in which to use thl+ calibration

equation was found to be in tables ;;f._utput resistance, _ ,

versus strain level, _ , for various temperatures and for each

value ol bonding strain _ o This qui_e considerable calculation

being ideally suited to a_$omatic confutation, and _n IBM 7090

electronic computer was utilized.

Computer program for strain _auge output c_ajc_ations

With reference to Table_ A!II.2 -4, the i.i+_ of FORTRAN

symbols, compuSer flow chart, and computer pv y an respectively,

the various stomps composing the program ca_ _e followed through:

(a) Data input. Va]ues of the bonding _tralns, estimated

err)rs, and values of (Ro)T (and errors) over the
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temperature range required are fed into the co_,iputer

on punched cards. Table AIII.5 shows how each data

card was made up, and Table AIII.6 gives an example

of the data input for the four gauges XX, YY, AA, and BBo

(b) The first "do loop" assimilates the data input, prepares

the output printer for operation, then selects the first

gauge for calculation°

(c) The second "do loop" performs the calcu/a_ion for succes-

sive values of temperature, T, calculating for each.,

value the gauge output and estimated error over the

strain range -1500 to +1500/_ "/" at inte_cals of

i00 /6<_,/". (Error estimation is considered in lhe

following section.)

(d) Completion of the second do loop operation returns the

computer to the first do ].oop where the next strain

gauge is considered and the whole calculation repeated°

(e) When both do loops are complete, the computer is stopped

and the output, which is printed out in the form of the

four-column table shown below, coilect_d.

,,HL ''

Temperature Strain Level, 6 3 Output Resistance Err_
Change, _ inAR_

°K o_s ohms

Range 20 ° to 460 ° RanEe -1500 to +1500_:/,
in 20 ° intervals in _O01_t"/" intervals
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Error Analysis

The p_obable error involved in computation of AR for k_ow_

errors in each of the variables involved is calculated by use

of a "normal error" analysis on Eq. (_.12).

Yhe normal error theory.gives

where _r is the total error, 5_ is the standard error of

each variable, and i is a function of the [ individual variables

involved.

Repeating Eq. (A3.1Z), then partially differentiating with

respect to each variable in tuk-n:

616.F&- T
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The error in _ can be found then from Eq. (A3.18):
7

f

k
f

f

I

#

This expression was t_ansferred to the computer program

so that the error could be calculated for each value of _l:_,

computed.

},

I
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":ABLE ]

CO,vlPUTER PROGRAM FOR CALCULATION OF: THE DYNAi'IIC
TIME FUNCTION FLJK HOOP STRESSES

* NOTE AT PAUSE 1 MOUNT REEL 893 WRITEA_LE ON B5
* NOTE AT PAUSE 2 DIS'4OUNT AND SAVE B5 FOR PRI(,iTING Oil

1 CAL,CC)M PLOTTER
* TAPE BS, RFEL 893, WRITE
* LIST
* LABEL

FORTRAN
C DYNAMIC STRESS FUNCT!ON FOR HOOP STRESSES

DIMENSION XX(30)_,CX(Z+O),C(3C-)
CALL PAUSE(61-1PAUSEI)
REWIN_ 6

] FORMAT (12A6)
2 FORMAT (F8.3)

OMEGA = 16,316
^TIM = 0.02
RTIM = 2.0

12 TAX = -1.0

CALL GRAPH(II.00,8.50,I.n'))
CALL FRA"-_F(0.0, O. 0 )
CALL XLN(i,5,O,9,50_3,5,C,4)
CALL YLN( 5,5q, i, 5_),I, 5'_,-C ,20 )
READ2,Z
DO 22 I = 1,4
READ 2,XX(1)
fREAD1, (C(J) ,J=1,12)
CALL LTR(Z,3.35,!,0_,C)

22 Z = Z + XX{ I)
READ2 ,Z
DO 23 I = 1,5
READ2,XX (I )

• READI,(C(J) _J=1,12}
CALL LTR(I.0,Z,I,O,C)

23 Z = Z - XX(I}

READ I, (CX(1),I=I,12)
CALL LTRlg,7,2,40,1,1,C×)
READ 1, (CX(I),I=I,i2)
CALL LTR(9.SO,3.35_ I,D,CX )
READ i, (CX(1),I=I,12}

CALL LTR(4.75,0,6, I ,C',CX )
25 TAX = TAX + 2,,0

GO TO 27_
26 TAX = TAX + 5,0
27 CALL CURV;:(I,I,O,I,-_,375,2,375,-3,595,0,1)

TIM = O,

28 TIM = TIM + _TIM
: .R : OMEGA*TIM

S : OMEGA*TAX
35 I F ( R'6,2832 ) 4b,4.5,46
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45 !F(S-6.2832) _5,55,47

! 46 R = R - 6.2832
: GO TO 35

47 S = S - 6.2832

GO TO 45
55 IF(TAX-TIM) 75,75,65

i 65 TFUN = I.-T!M/TAX-COSIR)+_,IN(R)/(OMEGA*TAX}
GO TO 101

75 TFUN : SIN(R)*{ I I.O-CO3(S) )/(OMEGAS'TAX) )-COS(R}
1" (! ,O-SIN(F,) I IOMEGA-_I AX }}

101 CALL PLOTPI(TIM,TFUN)
110 IF(RTIM - TI',I_115,115,28
115 IF( IO.O-TAX }130,130,12o
120 IF( 5.00-TA×}26,26,25
130 CALL NDPLOT

ENDFIL_ 6
ENDFILE 6
CALL REWUNL(6}
CALL PAUSE(6HPAUSE2)

' CALL EXIT

END

* DATA
3..'3"5
2.05

(3H0.5
1.95
(3H1.0

2.0
(3H1.5
2.0
(3H2,0
5.45
1.00
(4H 2,0
1.00
(4H 1.0

1.00
(4H 0
1.00

(4H-1.0
1.00
(4H-2.0
(23HDYNA;,IIC STRESS FUNCTION

(?HTIME {_$
(2RHHOOP STR=S,S nvr,_A,',IICF!JNCTION
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TABLE All, I

Dynamic Time Function Calculation

List of Variables for Computer Program

FORTRAN NAME SYMBOL MEANING

OMEGA 0.3 Natural Frequency of Vibration

TIM t Time

J

TAX .7- Decay Time

ATIM Increment of Time t

RTIM Maximum Value of _ to be Calculated
i

TFUN _ Dynamic Time Function

i

Graph Plotting Subroutine: Library Number J6 BC XYP2
Author: P o H o Thrower,

Io Bo Mo,
Oakland, California
May: 1963_

19650025752-047



Table a%_.2 Computer Flow Chart for Dynamic Time Function
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TABLE AII.3 DYNAHIC TIME FUNCTION

COMPUTER PROGRAN'_'FOR SAWTOOTH INPUT FUNCTION

* NOTE AT PAUSE 1 MOUNT REEL 893 WRITEA_LE ON B5
* NOTE AT PAUSE 2 DISMOUNT ArID SAVE B5 FOR PRINTING ON

I CAL,COM PLOTTER
* TAPE 85, REEL 893, WRITE
* LIST
* LABEL
* FORTRAN

C GENERAL DYNAMIC- FUNCTION FOR SA_._TOOTH INPUT

DIMENSION XX(30),_CX(40}gC(3O)
CALL PAUSE(6HPAUSE1)
REWIND 6

I FORMAT (]2A6)
2 FORMAT (FB.3)

ATIM '= 0,4
RTIM = 32.0
TAX = 0.0

CALL GRAPH( I 1.00,8.50,1.0_ }
CALL FRAME(O.OtO,O }
CALL XLN{].50,9.50,3.5,0.25}
CALL- YLN( 5.50,1,50,1.50,-0.20 }
READ2,Z
DO 22 I = 1,3
READ 2,XX(1)
READ1 t (C(J) i,J=l t12 )
CALL LTR(Z,,3.35,190,C)

22 Z = Z + XX(1)
REA D2 tZ
DO 23 I = 1,5
RFAD2,XX( I )
READI ,(C(J) ,J=l, 12 )
CALL LTR(1.0,Z,I,O,C)

23 Z = Z - XX(1)
READ 1_ (CX(1)tI=1912}
CALL LTR (O, 7,2,,-40t1',I,CX }
READ 1, (CX(1)tI=1.t12)
CALL LTR(9,,BOt3, 3591,09CX )
READ 1, (CX(1)tI=l,12)
CALL LTR{4.75tO.691,0,CX}

24 TAX = TAX + 1,,0
GO TO 27

25 TAX = TAX +6,0
GO TO 27

2_ TAX = TAX + gO,O
2'7 -CALL CURVF(1,1,1tOtl,-6,,Ot_Boqt-3,5,5,,"),] )

TIM : 0,.
28 TIN = TIM + ATIM

R - TIM
S = TAX

35 " IF(R-8,2832) 55o55_46
: 45 IF(S-G,2832)55t55947

46 R = R - 6,28_2
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GO TO 35

.: 47 S = S-6.2832
GO TO 45

55 IF(TAX-TIN1) 75,75,65
._ 65 TFUN = I,-TIiVI/TAX-COS(R)+SiN(R)/TAX
" GO TO I01

i 75 TFUN = SIN(R)_((Io-COS(S))/(TAX)-COS(R)_(I.-$1N(S)/TAX
101 CALL PLOTPT(TIM,TFUN)

.: II0 IF(RTIM - TIM)IIS,II5,28
115 IF (IO0.O-TAX) 130,130,12C)
-]20 IF(IO,C-TAX) 20,26,121
121 IF(3.0-TAX)26,25,24

" 130 CALL NDPLOT
ENDF ILE 6
ENDFILE 6
CALL REWUNL(6)
CALL 'PAUSE(6HPAUSE2)
CALL EXIT
END
DATA

3,95
2.50

' (2H10
2.50
(2H20
2,50 •

o ( 2 H3()
5,45
1,00
(4H 2.0
1.00
14H 1.0
1,00 "
(4H 0
1.00
(4H-i .0
1,00
(4H-2.0
(23HDYNAMI£ STRESS _UNCTION
(?HRAD IAN'S
(35HGENERAL DYNASTIC ST'RESS FUNCTION (A_

o

19650025752-050



TABLE AIIo4

PROGRAM DECK ALTERATIONS FOR ALTERNATE

, INPUT FUNCTIONS

(B) SQUARE WAVE INPUT

55 IF(TAX-TIM)75_75,65
66 TFUN = 1,0 - COS(R)

GO T_ 101
75 TFUN = 2°0*(SIN(P)*SIN(Q))

(C) EXPONENTIALLY DECAYING INPUT

55 TFUJ_ "= (SIN(R)I(OMEGA_TAX)-COS(R)+2.7183_
I(ATIM/TAX))/II°0+I.O/(OMLGA_TAX)_*_2.0)

|

(D) EXPONENTIAL _ TI'AE FUNCTION

5_ TFUN = ((2.7183/TAX)/(1°O+1.O/TAX_2.O}_*2._)_
I(2.7183*_(,TIM/TAX)*(2°O/TAX+TI/,R(1.O+]°O/TAX_2.h))
2-2.0_COS(R)/TAX-SIN(R)*_(I°O-I°O/TAX_*2.0))
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TABLE AIII.I

i Properties of the Test Vessel Mater_al

i

i Type 304 Stainless Steel

Structure: Austenitic

Density: 0.287 ib/cuoin.

Modulus of Elasticity: 29 x 106 psi

Specific Heat: 0.12 Btu/°F/ib

Thermal Conductivity: 9-4 Btu/hr/ft2/°F/ft_ at 200°F

T_e_l Expansion Coefficient: 9.6/_ in/in/°F, 32 to 312°F

9.9/z<In/in/°_, 32 to 6000_

Ultimate Tensile Strength: 85,000 psi

Yield Strength: 35,000 psi

Brinell Hardness: 146
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TABLE AIII.2

Variable Names for Computer Program

Variable Symbol Variable
Description Name

Bonding Strazn _ XBOND

Error in Value of Bonding Strain EXBON_

Unstressed Gauge Resistance [_]T XZERO

Error In Unstressed Gauge Resistance EXZERO

Number of Strain Gauges MBMAX

N-omber of Incremental Temperatures MZMAX

Temperature °K -r _EMP

Bonding Strain _-_B RBOND

Unstressed Gauge Resistance _-@_]T RZERO

Strain Due to Thermal F_pansion _i TEXP

Strain Level in Specimen _ STRAIN

Sum of Strains on Gauge 6 SLrMSTR

Intermediate Variable COEFF

Output Resistance Change _ OUTRES

Partial Derivatives of the Output _ _A_[_]_ DELZRO

Resistance Change _ _/_ _'_']' DELCCR/_. _/'k_-,.,/(_ C_,l_b DELGFR

with respect to its _ _/_ DLBOND

Constituent Variables _ _A_/_ -F DLTEMP
Error im _ Error in L_'_T ERZRO

the above _ . ,,[G.F]' ERGFR
i

Constituent _ " " Ca ERCCR

Variables ) ,, ,,G_ ERBOND

" " 7- ERTEMP

Calculated Error in Output Resistance " " _ ERROR
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/DO 32 ""

':_ i XBO;ID• rl_ t

_" R_OiiD.XmND(I) ] t
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_' ' [ G t i_" T_P. T_P + 20 i
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_. L. , I 1

STRAIN . -1600. j
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i STRAIN = STRAIN + I00.

I
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m I
I,

, I
l

,, 1

I STRAIN I!

!

I _itOIi - _ - s
_.___ TEMP - .60. . , NTINUEJ-----

2

' Table lIII.} Flow Chart for-Strain gauge characteristicl program.
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TABLE AIII.4

STRAIN GAUGE CHARACT[-R!STICS CG'-!PUTER PROGRAM

* JOB IC72. TIME 2, PAGES 60. hA:KE ROBERT P '.'tIE_G
* FORTRAN
* LA_EL
* LIST
C SEMICONDUCTOR SI"_IN GAUGE CHARACTERISTICS

DIMENSION XBOND(IO).EXBOND(IC).XZERO(3_).EXZRO(3 _}

2 FORMAT(4XgF5.1,1GX,FT.I.IOX.F10.3,1qX.F19.5)
3 FORMAT(21B)

FORMAT(4EIO.3)
5 FORMAT(EIO.3)

131 FORMAT(4X.5HTEMP..IOX,6HbTRAIN.11X.10HRESISTANCE.
II2X,5H_RROR}

132 FORMAT(IHI)
READ3.MBMAX.mZMAX
READ4,(XBOND(1),I=I.MBMAX)
READ4.(EXBOND(1).I=I,_MB_AX)
READ5,(XZERO(J},J=I,MZMAX}
READS,IEXZRO(J},J:I_MZMAX)

D032 I=I,MBMAX
R_OND : XBOND(I}
PRINT 132
PRINT 131
TEMP:C,

DO 321 J:I,_ZMAX
TEMP = TEMP + 20,
RZERO = XZERO(3}
TEXP : (TEMP-298°}*12.96
STRAIN = -1600.

20 SIRAIN = STRAIN + 1DO.

SUMSTR = 1.1026(STRAIN +2.*TEXP)
COEFF = RZERO*298.*STRAIN/(1COOOOO.*TEPP**2.)
OUTRES = COEFF*(122.*TEMP*SUMSTR)
DELZRO = 298.*STRAIN*(122.*TEMP+SUMSTR}/I1000nnO.

I*TEMP**2.)
DELGFR = CO.EFF * TEMP
DELCCR = COEFF*SUMSTR/3700.
DLBOND = COEFF*2.205
DLI'EMP = -122.286*COFFF
ERZRO : EXZRO(J}
ERGFR : 2.44
ERCCR : 185.
ERSOND = EX_OND(_}
_RTEMP = 2.

ERROR : SQRTF((DELZRO*ERZRO)**2.+(DELGFR*ERGFR}**
12.+(DELCCR*ERCCR)**2.+(DLBOND*ERBOND)**2.+
2(DLTEMP*ERTEMP)**2.)
PRINT 2,TEMP,STRAIN,OUTRES,ERROR
IFISTRAIN-1400°}20_20,30

30 IF (TEMP -460_) _21,321,32
321 CONTINUE
32 CONTINUE

CALL EXIT
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TABLE AIII 5

£

Data for Computer Programt
{

The information on each data card is lald out in the following

_ format"

•_ *DATA
i

MBMAX MZMAX

XBOND I--1 XBOND I=2 XBOND I--NBNAX

EXBOND, I=i EXBOND, 1=2 o . . ...... EXBOND, I=MBMAX

_ XZERO, J=l T = 20°K
5

XZERO, J=2 T = 40°K
<
i

_ XZERO, J= NZ-NAX T = 460°K

_ EXZERO, J = 1 T = 20°K

EXZERO, J = 2 T = 40°K

7

: F_ZERO, J = NZNAX T = 460°K

: * The following table (All!.6) gives an example of the data card
listing for strain gauges AA, BB, XX, andYY.
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• TABLE AIII,6

STRAIN GAUGE CHARACTERISTICS DATA INPUT '.IbIING

* DATA

, 4 23
-264,5 -1347,5 -899,0 -744°0

5,0 I0,0 8,0 8_0
160,6 2U
156_6 '+u
153.0 ou

149.7 _U
146.6 IUU
144,0 120

141,6 14U
139,7 ZOu

138,2 l_O
137,4 c:uu

137,9 gzU
137,4 Z'+o

138,0 zO(_,
139,'_ Z_o
141,2 JOU
143,5' 5ZU
146,2 .__.'J
149,1 _ou

156,1 4JU
160,3 a20
164,5 _'_u
168,8 46:J

6,0 zu
5,4 '+'_,
4,7 O,J

4,1 80
3,5 i00
3,0 120
2,4 14U

2,0 16U
i,6 iou

1,2 ,",.,,,
0,9 ZZu

0,6 Z4u
0,4 Z6U
0,2 280
0,2 3U:.'

C,2 32'.:
0 • 2 3_u
0,2 .Ibu

0,2 _o_
0,3 _uo
0,5 /*20

0,7 4/*0
I,I _bu

|
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_ (a) _tensional vibrations :
y

i"

I _xia!
-_ extensional

I motion

.A
2

:t

.I

• / \

_ Radial

< _ _/ extensional

- motion

; A

(b) Bending modes :

....l__---
i
)

i An axial mode - 2nd. axial mode shown as example

Radial modes /_/___\

2nd radial mode-= I _e__j

3rd radial mod

nodes ---

Figure i. Vibrational forms of a thin cylinder
with closed ends.
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p(t)dA

dO dz , axialstress

thickness, h ,:

1

6-z _e ,hoopstress
J

7/ main axisof vessel

Fig. 2 Hoop and axial stresses acting on an element of the
cylinder as a result of a radially acting pressure, p(t).
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p ------__
m

'9

_: (A) - Rectangular step function

_ T t

P p

_ Pm Pm

i

0 - = 0 \
T t T (=I/a) t

i (B) Linear decay (C) [_ponentia! decay

P(t)=Pm(l-t/T) for 0 t I' p(t)=Dm.e_at
= 0 for t T

P p

_, m Pm

i o r - J I
T (=l/a) t tI t

i (D) Exponential x time (E) Linear rise, exp. decay

P(t)=Pmaet'e'at P(t)=Pmt/t I for 0 t tI

=Pm.e a(t-t I) for t tI

Figure 3. Typical approximate mathematical forms for
blast loading.
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F(t)

Fig. 4 Analogous dynamic systems. Comparison of the cylinder and
its heavy end cap to a simple spring-mass system.

®

DISTANCE

Fig. 5 Space-time diagram for shock wave reflection process.
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Fig. i0 Strain and Pressure records, Test # CD 149
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Fig. I! Strain and Pressure records, Test # CDI50
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<" RECORD TRACE STRAIN CALIBRATION TEST CONDITIONS
GAUGE _A_

- LOCATION

Fig° I0 a AA (9) 59o5/_O/_m Test Not CD 149
Mixture" 2H2+0 Z

• Upper b BB (9) 61.5 Initial Pressure: 100mmHg
Ignitor: Primacord

Record c XX (7) 63.0 Trigger Position - 2

d _f (7) 58_2 Swee_speed: 0_3 ms/cm

Fig- I0 a Pressure 20.3 psi/cm Test No_ CD 149

Gauge (3) Mixture" 2H2+02
Lower

b 3, (5) " Initial Pressure: 100rmmHg
Record Ignitor: Primacord

c " (7) " Trigger Position - 2
Sweepspeed: io0 ms/cm

!

d " (9) "

%

Fig° ii a AA (9) 149_5/£_/"/cm Test Noo CD 150

Mixture: 2H2+02
Upper b BB (9) 154o4

Initial Pressure: 200mmHg

Record c XX (7) 147o0 Ignitor: Primacord
Trigger Position - 2

d YY (7) 146.0 Sweepspeed: 0_3 ms/cm

Fig. Ii a Pressure 20.3 psi/cm Test No. CD 150

Gauge (3) Mixture: 2P2+02

Lo_er Initial Pressure: 200mmHgb " (5) "
Record iIgnitor: Primacord

iTrigger Position - 2c " (7) ,,
iSweepspeed" I_0 ms/cm

d " (9) _'

]_ Note: To distinguish between the four traces on each record, they
are referred to as traces a,b,c, and d - lettering from the
top do_mo

Figures i0 & ii continued. Data to accompany photographic records
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TRACE STRAIN GAUGE LOCATION CALIBRATION
NUMBER

a AA 9 66.0 "/"/cm

b BB 9 72.4 "/"/cm

c Pressure Garage 9 20 psi/cm

d XX 7 64.3 "/"/cm

e YY 7 63.6 "/"/cm

f Pressure Gauge 7 20 psi/cm

g Pressure Gauge 2 20 psi/cm

Test No. CD 251; M_xnu_, 2H2+02; Initial Pressure,

100mmHg; Ignitor, Primacord; Trigger, ionization Probe;

Horizontal Sweep Speed, 5.0 ms/cm.

_~ _2 Records and D=_a for Test No CD251

J

I
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"_ 5O

_ 20 , I I ,,
'- 0 5 10 15 20
,_:

_ DISTANCE FROM IGNITER,FT
f,
9

i_i Fig. 13 Variation of incident .,,avepressure along
!i the length of the detonation tube for

2H9+0 _ mixture initially at !00 mra Hg with
i_ Prlma_ord ignition

'5
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Fig. 14 Variation of reflected wave pressure with initial
mixture pressure for 2H2+02 mixture with Primacord
ignition.
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IIII ............ ,
°

_ i_ r _ •

_i_ : _:

_: . 6 .' , I1_

_" _._

g
5

Fi_. 15 Enlargement of typical pressure record

Data: Trace from station 7, Te,_t CD149
_ i00 n_n Ilg initial pressure

i_ _[i-:turc2H2+0 2 (stolchlometrlc)
:?

_ 601 ty_e _ressure transdtmer with type 565 amplifier
O_ctllo._cope sweep _ueed 1.0 _illisecond/cm

(left to ri!_ht)
Vertleal calibration - 20.32 osi/cm

The above fig0are, an enlargement of one of the pressure
records from an actnal test is an example of the method used• 9

_ to find an approximate nlathematlcal form for the pressure
) decay function. By _ImDiy drawing the best straight llne
:_ through the recordlng--and, as may be seen, this is no_ an

i tmreasonable approxl.mtion--the record can be reduced to
i a function of the form:

;i, p = Pm(l - t/T) for 0 t T

= 0 for t T

,I
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7ooo
_!_' + Calculated for s__.wtoothftmction,
__ 2 msec decay time

_i 6000- rl Straingaugemeasurements at stat.lon 9

_ 0 Etrain gauge measurements at station

 ooo- ///
i_ 4000 :
a:

- / /oa. 3000 /

-r /

2000"

_. 1000

_._ , _ II ....

i 0 100 .200

INITI, ,L PRESSURE,mmHg.

FiS. 19 Peak amplitudes of analytical and experimental, hoopstresses as a function o_ Inltial pressure

19650025752-076



L I ""

Istroio I

Strain "---/'_,_ _", Gauge BB _ /\
!

I

i

• Pressure __]

0 0.5 1.0 msec.
TEST CD!49 TIME

Calibration data:

Strain gauge AA: 59.5 _"l"/cm

Strain Gauge BB: 61.5 0'"/"/cm

For the theoretical curve the sawtooth approximal:ion
for blast loading was used, with pulse decay tl.rne,
T = 2 ms-_c

Fig. 20 Dynamic hoop response of vessel--comparison of
experimental and analytical results
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Fig. AIII.I Strain and temperature sensitivity of a typical
semiconductor strain gauge

i
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(9 118D

•

<r_u_ 114[ /n_ i , i ,.... I t10
001 0.02 Q03 0.04 0.05

RESISTIV!TY, ohms. cm.

W 12,000t
8,oool-

, _ 4,000

0 l I ,,,_, I
OD1 Q02 Q03 0.04 QO_

RESISTIVITY, ohms •cm.

Vig. AIII.2 Gauge factor, G.F. ', and gauge constant,
C ', as a function of the resistivity of
a 2 st_con semiconductor strain gauge
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SENS_/FFY

-_T

' STRAIN

Z
C-=6,.,,,(T+298)_

D

APPARENT STRAIN
DUE TO THERMAL

BONDING EXPANSION
: POINT • £ = EB• B

: ,C' STRAIN
LEVEL,

Fig.AIII,4 Chara_teristi¢ attain - sensitivity curvea _nr semieonductct strainl_s

i
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I

• /_ Strain gauge_/ \ \" _o_,._
120/I \ \ 120_/ +_,\

Fig. AIII.7 Wheatstone Bridge Circuit for 120 strain _auge.

oooo i
Ballast resistor

i i ,

aupply Strain gauge

_00 volts ,d'c" . 120 _ 0utpit
ii ii ,, A

m

Pig. AXII.9 0onatant current circuit for a 12C strain gauge.
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AXII,11 Photograph of the strain°gat_ge circuit, showing
• calibretlon input-output on the left, _d the Inp_/£s

for ths slx operational channels on the right

AIXI.I2 Exp_rimentai set-up for strain recerding, sho_ng the
, stra_,n gauge circuit, power supply, and oscilloscope
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8
I

, 4

i i r o.o17" ,

{! 3"
_ 16
-4"

! -

_ 7
_ 8

,a ,

Fig. AIII.19 Baldwln-Lima-Hamilton type SPB2-18-12
_ Semiconductor Strain Gauge

Table 9.fGauK_rties

5 R Unbacked, unbonded resistance - 147.oNns _rlthin 1%

G.Fo ' Bactc Gauge Factor - 122.0 wlthi1._2% at 25°C
b t

_; C2 Gauge ,constane - 3700 within 5% at 25°C

i The,_mal expansion ccefflcient - 2.5 tn/in/°F

_ Material - Gauge element of P-type sJ.licon (cut on the#

ii,i Iii axis), morn,ted onto bakelite backing strip

}i Overall gauge length - 1/4 in

Backing dimensions - 3/8 x 3/16 in
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